December 7, 2021

Green Industry

Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples | Journal of Nanobiotechnology


  • 1.

    Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–3.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Zhu N, Zhang DY, Wang WL, Li XW, Yang B, Song JD, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Bai Y, Yao LS, Wei T, Tian F, Jin DY, Chen LJ, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020;323:1406–7.

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382:970–1.

    Article 

    Google Scholar
     

  • 5.

    Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020;4:1140–9.

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst. 2019;144:396–411.

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis—a review of current methods. Biosens Bioelectron. 2021;172:112752.

    Article 

    Google Scholar
     

  • 8.

    Xu L, Wang J, Liu YL, Xie LF, Su B, Mou DL, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381:1240–7.

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Lu Y, Xue JX, Deng T, Zhou XJ, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26:732–40.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 2016;538:270–3.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR, Palefsky JM, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360:436–9.

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–42.

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360:439–44.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, et al. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 2020;288:198129.

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, et al. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N Engl J Med. 2020;383:1492–4.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360:444–8.

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Ai JW, Zhou X, Xu T, Yang ML, Chen YY, He GQ, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8:1361–9.

    Article 

    Google Scholar
     

  • 18.

    Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–4.

    Article 

    Google Scholar
     

  • 19.

    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Chen Y, Yang SX, Peng S, Li W, Wu F, Yao Q, et al. N1-Methyladenosine detection with CRISPR-Cas13a/C2c2. Chem Sci. 2019;10:2959–75.


    Google Scholar
     

  • 21.

    Broughton JP, Deng XD, Yu GX, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38:870–4.

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Ma PX, Meng QZ, Sun BQ, Zhao B, Dang L, Zhong MT, et al. MeCas12a, a highly sensitive and specific system for COVID-19 detection. Adv Sci. 2020;7:2001300.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, et al. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: a promising method in the point-of-care detection. Biosens Bioelectron. 2020;169:112642.

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Wu H, Qian C, Wu C, Wang Z, Wang D, Ye Z, et al. End-point dual specific detection of nucleic acids using CRISPR/Cas12a based portable biosensor. Biosens Bioelectron. 2020;157:112153.

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Wang R, Qian C, Pang Y, Li M, Yang Y, Ma H, et al. opvCRISPR: one-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens Bioelectron. 2021;172:112766.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Fozouni P, Son S, de León Derby MD, Knott GJ, Gray CN, D’Ambrosio MV, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2020;184:323–33.

    Article 

    Google Scholar
     

  • 27.

    Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv Mater. 2019;31:e1905311.

    Article 

    Google Scholar
     

  • 28.

    Shao N, Han X, Song YN, Zhang PC, Qin LD. CRISPR-Cas12a coupled with platinum nanoreporter for visual quantification of SNVs on a volumetric bar-chart chip. Anal Chem. 2019;91:12384–91.

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Bruch R, Johnston M, Kling A, Mattmüller T, Baaske J, Partel S, et al. CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosens Bioelectron. 2021;177:112887.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Xu W, Jin T, Dai Y, Liu CC. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens Bioelectron. 2020;155:112100.

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Liang JJ, Liu HW, Lan CF, Fu QQ, Huang CH, Luo Z, et al. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. Nanotechnology. 2014;25:495501.

    Article 

    Google Scholar
     

  • 32.

    Liang JJ, Liu HW, Huang CH, Yao CZ, Fu QQ, Li XQ, et al. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Anal Chem. 2015;87:5790–6.

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Liang MD, Li ZL, Wang WS, Liu JK, Liu LS, Zhu GL, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun. 2019;10:3672.

    Article 

    Google Scholar
     

  • 34.

    Qian C, Wang R, Wu H, Zhang F, Wu J, Wang L. Uracil-mediated new photospacer-adjacent motif of Cas12a to realize visualized DNA detection at the single-copy level free from contamination. Anal Chem. 2019;91:11362–6.

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Zuo XL, Fan CH, Chen HY. BIOSENSING: CRISPR-powered diagnostics. Nat Biomed Eng. 2017;1:1–2.

    Article 

    Google Scholar
     



  • Source link